

JULY 2015

A PRINCIPLED TECHNOLOGIES TEST REPORT
Commissioned by Dell

DESIGN ADVANTAGES OF HADOOP ETL OFFLOAD WITH THE INTEL
PROCESSOR-POWERED DELL | CLOUDERA | SYNCSORT

Many companies are adopting Hadoop solutions to handle large amounts of

data stored across clusters of servers. Hadoop is a distributed, scalable approach to

managing Big Data that is very powerful and can bring great value to organizations.

Companies use extract, transform, and load (ETL) jobs to bring together data from many

different applications or systems on different hardware in order to modify or adjust the

data in some way, and then put it into a new format that they can mine for useful

information.

Using traditional ETL can require highly experienced, expensive, and hard-to-

find programmers to create jobs in order to extract data. Dell, Cloudera, and Syncsort

offer an integrated Hadoop ETL solution that allows entry-level technicians—after only a

few days of training—to perform the same tasks that these Hadoop specialists perform,

often even more quickly. In our tests, we found that with the unique design of the Dell |

Cloudera | Syncsort solution can allow an end user with little experience using Hadoop

to develop and deploy optimized ETL jobs up to 58.8 percent faster than an expert-

driven do-it-yourself (DIY) solution deployed using open-source tools.

http://www.principledtechnologies.com/

A Principled Technologies test report 2

Design advantages of Hadoop ETL offload with the Intel processor-
powered Dell | Cloudera | Syncsort solution

SAVE TIME CREATING ETL JOBS WITH THE DELL | CLOUDERA | SYNCSORT
SOLUTION

Hadoop implementations suffer from several barriers to effectiveness. They

often have primitive integration with infrastructure, and today we find there is currently

a lack of available talent to run Hadoop clusters and perform data ingest and processing

tasks using the cluster.1 The Dell | Syncsort solution offers help with both of these

problems.

The Dell | Cloudera | Syncsort solution is a reference architecture that offers a

reliable, tested configuration that incorporates Dell hardware on the Cloudera Hadoop

platform, with Syncsort’s DMX-h ETL software. The Dell | Cloudera | Syncsort reference

architecture includes four Dell PowerEdge R730xd servers and two Dell PowerEdge R730

servers, powered by the Intel Xeon processor E5-2600 v3 product family.

For organizations that want to optimize their data warehouse environments, the

Dell | Cloudera | Syncsort reference architecture can greatly reduce the time needed to

deploy Hadoop when using the included setup and configuration documentation as well

as the validated best practices. Leveraging the Syncsort DMX-h software means Hadoop

ETL jobs can be developed using a graphical interface in a matter of hours, with minor

amounts of training, and with no need to spend days developing code. The Dell |

Cloudera | Syncsort solution also offers professional services with Hadoop and ETL

experts to help fast track your project to successful completion.2

To understand how fast and easy designing ETL jobs with the Dell | Cloudera |

Syncsort solution can be, we had an entry-level technician and a highly experienced

Hadoop expert work to create three Hadoop ETL jobs using different approaches to

meet the goals of several use cases.

The entry-level worker, who had no familiarity with Hadoop and less than one

year of general server experience, used Syncsort DMX-h to carry out these tasks. Our

expert had 18 years of experience designing, deploying, administering, and

benchmarking enterprise-level relational database management systems (RDBMS). He

has deployed, managed, and benchmarked Hadoop clusters, covering several Hadoop

distributions and several Big Data strategies. He designed and created the use cases

using only free open-source DIY tools.

1 Source: survey of attendees for the 2014 Gartner webinar Hadoop 2.0 Signals Time for Serious Big Data Consideration.
www.informationweek.com/big-data/software-platforms/cloudera-trash-talks-with-enterprise-data-hub-release/d/d-id/1113677
2 Learn more at en.community.dell.com/dell-blogs/dell4enterprise/b/dell4enterprise/archive/2015/06/09/fast-track-data-
strategies-etl-offload-hadoop-reference-architecture

Extract, Transform, and
Load

ETL refers to the
following process in
database usage and data
warehousing:
• Extract the data from
multiple sources
• Transform the data so
it can be stored properly
for querying and analysis
• Load the data into the
final database,
operational data store,
data mart, or data
warehouse

http://www.informationweek.com/big-data/software-platforms/cloudera-trash-talks-with-enterprise-data-hub-release/d/d-id/1113677
http://en.community.dell.com/dell-blogs/dell4enterprise/b/dell4enterprise/archive/2015/06/09/fast-track-data-strategies-etl-offload-hadoop-reference-architecture
http://en.community.dell.com/dell-blogs/dell4enterprise/b/dell4enterprise/archive/2015/06/09/fast-track-data-strategies-etl-offload-hadoop-reference-architecture

A Principled Technologies test report 3

Design advantages of Hadoop ETL offload with the Intel processor-
powered Dell | Cloudera | Syncsort solution

The implementation experience of these two workers showed us that using the

Dell | Cloudera | Syncsort solution was faster, easier, and—because a less experienced

employee could use it to create ETL jobs—far less expensive to implement. In this cost

analysis, we apply those findings to a hypothetical large enterprise.

Figure 1: Our entry-level
employee completed the three
ETL design jobs using the Dell |
Cloudera | Syncsort solution in
less than half the time the much
more experienced engineer
required using other tools.
(Lower numbers are better.)

As Figure 1 shows, the beginner using the Dell | Cloudera | Syncsort solution

was able to complete the three ETL design jobs in a total of 31 hours, whereas the

senior engineer using open-source tools needed 67 hours—more than twice as long.

Note that in addition to actually coding/designing the use cases, both of the workers

spent time familiarizing themselves with the requirements, revising to correct output

issues, and validating results.

Along with the savings3 that come from having a less highly compensated

employee perform the design work more quickly, the Dell | Cloudera | Syncsort solution

offers another avenue to cost-effectiveness: performance. Additional testing in the PT

labs4 revealed that due to their extreme efficiency, the ETL jobs our entry-level worker

created using Syncsort DMX-h ran more quickly than those our highly compensated

expert created. This can lead to savings in server utilization.

In this paper, we provide a quick overview of the Dell | Cloudera | Syncsort

solution and then discuss the experience the entry-level technician had while receiving

training and using the Dell | Cloudera | Syncsort solution.

3 Cost advantages of Hadoop ETL offload with the Intel processor-powered Dell | Cloudera | Syncsort solution
http://www.principledtechnologies.com/Dell/Dell_Cloudera_Syncsort_cost_0715.pdf
4 Performance advantages of Hadoop ETL offload with the Intel processor-powered Dell | Cloudera | Syncsort solution
www.principledtechnologies.com/Dell/Dell_Cloudera_Syncsort_performance_0715.pdf

http://www.principledtechnologies.com/Dell/Dell_Cloudera_Syncsort_cost_0715.pdf
http://www.principledtechnologies.com/Dell/Dell_Cloudera_Syncsort_performance_0715.pdf

A Principled Technologies test report 4

Design advantages of Hadoop ETL offload with the Intel processor-
powered Dell | Cloudera | Syncsort solution

ABOUT SYNCSORT DMX-h
Syncsort DMX-h is a high-performance data integration software that runs

natively in Hadoop, providing everything needed to collect, prepare, blend, transform,

and distribute data. DMX-h, with its Intelligent Execution, allows users to graphically

design sophisticated data flows once and deploy on any compute framework (Apache

MapReduce, Spark, etc. on premise or in the cloud), future-proofing the applications

while eliminating the need for coding.

Using an architecture that runs ETL processing natively in Hadoop, without code

generation, Syncsort DMX-h lets users maximize performance without compromising on

the capabilities and typical use cases of conventional ETL tools. In addition, the software

packages’ industrial-grade capabilities to deploy, manage, monitor, and secure your

Hadoop environment.

Figure 2: How the Dell | Cloudera | Syncsort solution for Hadoop works.

Syncsort SILQ®

Syncsort SILQ is a technology that pairs well with DMX-h. SILQ is a SQL offload

utility designed to help users visualize and move their expensive data warehouse

(SQL) data integration workloads into Hadoop. SILQ supports a wide range of SQL

flavors and can parse thousands of lines of SQL code in seconds, outputting logic

flowcharts, job analysis, and DMX-h jobs. SILQ has the potential to take an

overwhelming SQL workload migration process and make it simple and efficient.

A Principled Technologies test report 5

Design advantages of Hadoop ETL offload with the Intel processor-
powered Dell | Cloudera | Syncsort solution

About Dell | Cloudera | Syncsort training and professional services
An integral part of the Dell | Cloudera | Syncsort solution is the on-site training

that the company makes available for a fee. This training typically lasts four days.

However, because of our tight time frame, our technician worked with the trainer for

two and a half intensive days. The points below are based on the reflections of the

technician:

 The training sessions were a mix of lecture, lessons, and question and

answer.

 The technician logged into Syncsort’s training labs where VMs were set up

with Hadoop clusters ready for practicing on.

 The technician was able to ask the instructor anything, which helped him

get a sense of best practices and how other people are currently using the

product.

 In addition to learning how to use DMX-h, the technician also learned how

to use Syncsort’s documentation effectively, which made building jobs much

easier.

 By the end of the training, the technician felt he had been well exposed to

every area of Syncsort DMX-h.

Another important component of the Dell | Cloudera | Syncsort solution is

ongoing enablement assistance that the company makes available for a fee. (Technical

support to answer questions about the product is included with the purchase price.) The

points below are based on the reflections of the technician:

 After setting up his first job in a matter of hours, our technician sought

approval from Syncsort. Their enablement assistance team helped him

finalize and tweak his job for performance.

 When our technician had a question about his output being formatted

correctly, the Syncsort team looked at his job definitions and provided

feedback.

A Principled Technologies test report 6

Design advantages of Hadoop ETL offload with the Intel processor-
powered Dell | Cloudera | Syncsort solution

THE ETL JOBS OUR WORKERS DESIGNED
In our tests, both the entry-level technician and the senior engineer used the

same source dataset on the HDFS cluster, generated from the TPC-H dataset at scale

factor 200. The entry-level technician utilized Syncsort DMX-h to develop the ETL job for

each use case, while the senior engineer had the flexibility to utilize the publically

available open-source tools of their choice. The senior engineer chose to utilize Apache®

Pig because of its procedural nature rather than other commonly used tools, such as

Apache Hive.

For each of the three use cases, we compared the resulting output of the two

ETL jobs to ensure that they achieved the same business goals. See Appendix A for more

details on our ETL jobs.

Use case 1: Fact dimension load with Type 2 Slowly Changing Dimensions (SCD)
Businesses often feed their Business Intelligence decisions using the

Dimensional Fact Model, which uses a set of dimensional tables (tables with active and

historical data about a specific category, such as Geography or Time) to feed a fact table

(a table that joins the active records of all the dimensional tables on a common field)

summarizing current business activity. While some dimension tables never change,

some often experience updates. The dimension tables must be up-to-date to feed the

fact table correctly, and many businesses would like to keep historical data as well for

archival purposes.

A common method to identify changes in data is to compare historical and

current data using Changed Data Capture (CDC). A common method for updating

records while retaining the outdated record is Type 2 Slowly Changing Dimensions

(SCD). We used outer joins and conditional formatting to implement CDC and identify

changed records. We then implemented Type 2 SCD to mark outdated records with an

end-date and insert the updated data as a new, current record (in our case we used a

perpetual end-date of 12/31/9999 to specify a current record). We then fed the

information from the dimensional tables downstream to a fact table that could be

queried for Business Intelligence.

Figure 3 shows the Syncsort DMX-h job editor with the completed use case 1

design. The individual boxes represent tasks, while the arrows between the tasks

represent data flow.

A Principled Technologies test report 7

Design advantages of Hadoop ETL offload with the Intel processor-
powered Dell | Cloudera | Syncsort solution

Figure 3: Syncsort DMX-h
job editor showing the
completed use case 1
design.

Both the entry-level technician using the Dell | Cloudera | Syncsort solution and

the senior engineer using open-source DIY tools were able to design effective jobs to

perform Type 2 Slowly Changing Dimensions to feed the Dimensional Fact Model. The

beginner was able to design the job 47.8 percent faster than the senior engineer (see

Figure 4).

Figure 4: Time to design the
Fact dimension load with Type
2 SCD use case. (Lower
numbers are better.)

A Principled Technologies test report 8

Design advantages of Hadoop ETL offload with the Intel processor-
powered Dell | Cloudera | Syncsort solution

Use case 2: Data validation and pre-processing
Data validation is an important part of any ETL process. It is important for a

business to ensure that only usable data makes it into their data warehouse. And, that

when data is unusable, it’s important to mark that unusable data with an error message

explaining why it’s invalid. Data validation can be performed with conditions and filters

to check for and discard data that is badly formatted or nonsensical.

Figure 5 shows the Syncsort DMX-h job editor with the completed use case 2

design, which pictures the metadata panel showing a sample of the conditions used to

reformat and validate the data.

Figure 5: Syncsort DMX-h job
editor showing the completed
use case 2 design.

Both the entry-level technician using the Dell | Cloudera | Syncsort solution and

the senior engineer using open-source DIY tools were able to design effective jobs to

perform accurate data validation, but the beginner was able to design the job 55.6

percent faster than the senior engineer using Apache Pig (see Figure 6). The Syncsort

DMX-h graphical user interface made it easy to quickly try new filters and sample the

outputs. Being able to rapidly prototype the data validation job meant less time spent

revising.

A Principled Technologies test report 9

Design advantages of Hadoop ETL offload with the Intel processor-
powered Dell | Cloudera | Syncsort solution

Figure 6: Time to create the
Data validation and pre-
processing use case. (Lower
numbers are better.)

Use case 3: Vendor mainframe file integration
The need to reformat heterogeneous data sources into a more useable format is

a common requirement of businesses with many varied data sources. Often companies

have high-value data locked away in the mainframe and want to assimilate that data

into the cluster. Some mainframe data types use a COBOL copybook to specify field

formats. Syncsort DMX-h makes the process of reformatting mainframe data sources

easy by allowing the user to link a COBOL copybook into metadata and automatically

interpret the flat file’s record layout—one of many data integration features Syncsort

DMX-h offers. Syncsort DMX-h enabled an inexperienced IT person with no prior

exposure to mainframe-formatted files to interpret these legacy data types, all without

disturbing the integrity of the original data.

Figure 7 shows the Syncsort DMX-h job editor with the completed use case 3

design. The task shows a single mainframe-formatted data source being split into two

ASCII-formatted outputs.

A Principled Technologies test report 10

Design advantages of Hadoop ETL offload with the Intel processor-
powered Dell | Cloudera | Syncsort solution

Figure 7: Syncsort DMX-h
job editor showing the
completed use case 3
design.

Both the entry-level technician using the Dell | Cloudera | Syncsort solution and

the senior engineer using open source DIY tools were able to design effective jobs to

reformat the mainframe data successfully, but the beginner was able to design the job

58.8 percent faster (see Figure 8).

Figure 8: Time to create the
Vendor mainframe file
integration use case. (Lower
numbers are better.)

A Principled Technologies test report 11

Design advantages of Hadoop ETL offload with the Intel processor-
powered Dell | Cloudera | Syncsort solution

CONCLUSION
High-level Hadoop analysis requires custom solutions to deliver the data that

you need and the amount of time that even senior engineers require to create ETL jobs

in a DIY hardware and software situation, can be substantial.

We found that the Dell | Cloudera | Syncsort solution was so easy to use that an

entry-level employee could use it to create optimized ETL jobs after only a few days of

training. And he could do it quickly—our technician, who had no previous experience

using Hadoop, developed three optimized ETL jobs in 31 hours. That is less than half of

the 68 hours our expert with years of Hadoop experience needed to create the same

jobs using open source tools.

Using the Dell | Cloudera | Syncsort solution means that your organization can

implement a Hadoop solution using employees already on your staff rather than trying

to recruit expensive, difficult-to-find specialists. Not only that, but the projects can be

completed in a fraction of the time. This makes the Dell | Cloudera | Syncsort solution a

winning business proposition.

A Principled Technologies test report 12

Design advantages of Hadoop ETL offload with the Intel processor-
powered Dell | Cloudera | Syncsort solution

APPENDIX A – HOW WE TESTED
Installing the Dell | Cloudera Apache Hadoop Solution

We installed Cloudera Hadoop (CDH) version 5.4 onto our cluster by following the “Dell | Cloudera Apache

Hadoop Solution Deployment Guide – Version 5.4” with some modifications. The following is a high-level summary of

this process.

Configuring the Dell Force10 S55 and Dell PowerConnect S4810 switches
We used the Dell Force10 S55 switch for 1GbE external management access from our lab to the Edge Node. We

configured two Dell PowerConnect S4810 switches for redundant 10GbE cluster traffic.

Configuring the BIOS, firmware, and RAID settings on the hosts
We used the Dell Deployment Tool Kit to configure our hosts before OS installation. We performed these steps

on each host.

1. Boot into the Dell DTK USB drive using BIOS boot mode.

2. Once the CentOS environment loads, choose the node type (infrastructure or storage), and enter the iDRAC

connection details.

3. Allow the system to boot into Lifecycle Controller and apply the changes. Once this is complete, the system will

automatically reboot once more.

Installing the OS on the hosts
We installed CentOS 6.5 using a kickstart file with the settings recommended by the Deployment Guide. We

performed these steps on each node.

1. Boot into a minimal CentOS ISO and press Tab at the splash screen to enter boot options.

2. Enter the kickstart string and required options, and press Enter to install the OS.

3. When the OS is installed, run yum updates on each node, and reboot to fully update the OS.

Installing Cloudera Manager and distributing CDH to all nodes
We used Installation Path A in the Cloudera support documentation to guide our Hadoop installation. We chose

to place Cloudera Manager on the Edge Node so that we could easily access it from our lab network.

1. On the Edge Node, use wget to download the latest cloudera-manager-installer.bin, located on

archive.cloudera.com.

4. Run the installer and select all defaults.

5. Navigate to Cloudera Manager by pointing a web browser to

http://<Edge_Node_IP_address>:7180.

6. Log into Cloudera Manager using the default credentials admin/admin.

7. Install the Cloudera Enterprise Data Hub Edition Trial with the following options:

a. Enter each host’s IP address.

b. Leave the default repository options.

c. Install the Oracle Java SE Development Kit (JDK).

d. Do not check the single user mode checkbox.

e. Enter the root password for host connectivity.

8. After the Host Inspector checks the cluster for correctness, choose the following Custom Services:

a. HDFS

b. Hive

A Principled Technologies test report 13

Design advantages of Hadoop ETL offload with the Intel processor-
powered Dell | Cloudera | Syncsort solution

c. Hue

d. YARN (MR2 Included)

9. Assign roles to the hosts using Figure 9.

Service Role Node(s)

HBase

 Master nn01

 HBase REST Server nn01

 HBase Thrift Server nn01

 Region Server nn01

HDFS

 NameNode nn01

 Secondary NameNode en01

 Balancer en01

 HttpFS nn01

 NFS Gateway nn01

 DataNode dn[01-04]

Hive

 Gateway [all nodes]

 Hive Metastore Server en01

 WebHCat Server en01

 HiveServer2 en01

Hue

 Hue Server en01

Impala

 Catalog Server nn01

 Impala StateStore nn01

 Impala Daemon nn01

Key-value Store Indexer

 Lily Hbase Indexer nn01

Cloudera Management Service

 Service Monitor en01

 Activity Monitor en01

 Host Monitor en01

 Reports Manager en01

 Event Server en01

 Alert Publisher en01

Oozie

 Oozie Server nn01

Solr

 Solr Server nn01

Spark

 History Server nn01

 Gateway nn01

A Principled Technologies test report 14

Design advantages of Hadoop ETL offload with the Intel processor-
powered Dell | Cloudera | Syncsort solution

Service Role Node(s)

Sqoop 2

 Sqoop 2 Server nn01

YARN (MR2 Included)

 ResourceManager nn01

 JobHistory Server nn01

 NodeManager dn[01-04]

Zookeeper

 Server nn01, en01, en01

Figure 9: Role assignments.

10. At the Database Setup screen, copy down the embedded database credentials and test the connection. If the

connections are successful, proceed through the wizard to complete the Cloudera installation.

Installing the Syncsort DMX-h environment
Installation of the Syncsort DMX-h environment involves installing the Job Editor onto a Windows server,

distributing the DMX-h parcel to all Hadoop nodes, and installing the dmxd service onto the NameNode. We used the

30-day trial license in our setup.

Installing Syncsort DMX-h onto Windows
We used a Windows VM with access to the NameNode to run the Syncsort DMX-h job editor.

1. Run dmexpress_8-1-0_windows_x86.exe on the Windows VM and follow the wizard steps to install the

job editor.

Distributing the DMX-h parcel via Cloudera Manager
We downloaded the DMX-h parcel to the Cloudera parcel repository and used Cloudera Manager to pick it up

and send it to every node.

1. Copy dmexpress-8.1.7-el6.parcel_en.bin to the EdgeNode and set execute permissions for the

root user.

2. Run dmexpress-8.1.7-el6.parcel_en.bin and set the extraction directory to /opt/cloudera/parcel-repo.

3. In Cloudera Manager, navigate to the Parcels section and distribute the DMExpress parcel to all nodes.

Installing the dmxd daemon on the NameNode
We placed the dmxd daemon on the NameNode in order to have it in the same location as the YARN

ResourceManager.

1. Copy dmexpress-8.1.7-1.x86_64_en.bin to the NameNode and set execute permissions for the root

user.

2. Run dmexpress-8.1.7-el6.parcel_en.bin to install the dmxd daemon.

Post-install configuration
We made a number of changes to the cluster in order to suit our environment and increase performance.

Relaxing HDFS permissions
We allowed the root user to read and write to HDFS, in order to simplify the process of performance testing.

1. In Cloudera Manager, search for “Check HDFS Permissions” and uncheck the HDFS (Service-Wide) checkbox.

A Principled Technologies test report 15

Design advantages of Hadoop ETL offload with the Intel processor-
powered Dell | Cloudera | Syncsort solution

Setting YARN parameters
We made a number of parameter adjustments to increase resource limits for our map-reduce jobs. These

parameters can be found using the Cloudera Manager search bar. Figure 10 shows the parameters we changed.

Parameter New value

yarn.nodemanager.resource.memory-mb 80 GiB

yarn.nodemanager.resource.cpu-vcores 35

yarn.scheduler.maimum-allocation-mb 16 GiB

Figure 10: YARN resource parameter adjustments.

Custom XML file for DMX-h jobs
We created an XML file to set cluster parameters for each job. In the Job Editor, set the environment variable

DMX_HADOOP_CONF_FILE to the XML file path. The contents of the XML file are below.

<?xml version="1.0"?>

<configuration>

<!-- Specify map vcores resources -->

<property>

<name>mapreduce.map.cpu.vcores</name>

<value>2</value>

</property>

<!-- Specify reduce vcores resources -->

<property>

<name>mapreduce.reduce.cpu.vcores</name>

<value>4</value>

</property>

<!-- Specify map JVM Memory resources -->

<property>

<name>mapreduce.map.java.opts</name>

<value>-Xmx2048m</value>

</property>

<!-- Specify reduce JVM Memory resources -->

<property>

<name>mapreduce.reduce.java.opts</name>

<value>-Xmx7168m</value>

</property>

<!-- Specify map Container Memory resources -->

<property>

A Principled Technologies test report 16

Design advantages of Hadoop ETL offload with the Intel processor-
powered Dell | Cloudera | Syncsort solution

<name>mapreduce.map.memory.mb</name>

<value>2560</value>

</property>

<!-- Specify reduce Container Memory resources -->

<property>

<name>mapreduce.reduce.memory.mb</name>

<value>8704</value>

</property>

<!-- Specify reducers to be used -->

<property>

<name>mapreduce.job.reduces</name>

<value>32</value>

</property>

</configuration>

Creating the Syncsort DMX-h use cases
In our testing, we measured the time required to design and create DMX-h jobs for three use cases. Screenshots

of the DMX-h jobs for each use case appear below.

Use case 1: Fact dimension load with Type 2 Slowly Changing Dimensions (SCD)
We used outer joins and conditional reformatting to implement Type 2 SCD for Use Case 1. Figure 11 shows the

UC1 job layout.

Figure 11: Use Case 1 job
layout.

A Principled Technologies test report 17

Design advantages of Hadoop ETL offload with the Intel processor-
powered Dell | Cloudera | Syncsort solution

Use case 2: Data validation and pre-processing
We used a copy task with conditional filters to implement Data Validation for Use Case 2. Figure 12 shows the

UC2 job layout.

Figure 12: Use Case 2 job
layout.

Use case 3: Vendor mainframe file integration
We used a copy task with imported metadata to implement Vendor Mainframe File Integration for use case 3.

Figure 13 shows the UC3 job layout.

Figure 13: Use Case 3 job
layout.

A Principled Technologies test report 18

Design advantages of Hadoop ETL offload with the Intel processor-
powered Dell | Cloudera | Syncsort solution

Creating the DIY use cases
We used Pig, Python and Java to implement the DIY approaches to each use case. The DIY code for each use case

appears below.

Use case 1: Fact dimension load with Type 2 Slowly Changing Dimensions (SCD)

set pig.maxCombinedSplitSize 2147483648

set pig.exec.mapPartAgg true

-- uc1

-- parameters and constants

-- input and output files

%DECLARE IN_O_UPDATES '/UC1/200/Source/orders.tbl'

%DECLARE IN_P_UPDATES '/UC1/200/Source/part.tbl'

%DECLARE IN_S_UPDATES '/UC1/200/Source/supplier.tbl'

%DECLARE IN_O_HISTORY '/UC1/200/Source/ORDERS_DIM_HISTORY'

%DECLARE IN_P_HISTORY '/UC1/200/Source/PART_DIM_HISTORY'

%DECLARE IN_S_HISTORY '/UC1/200/Source/SUPPLIER_DIM_HISTORY'

%DECLARE IN_LINEITEM '/UC1/200/Source/lineitem.tbl'

%DECLARE OUT_O_HISTORY '/DIY/200/UC1/ORDERS_DIM_HISTORY'

%DECLARE OUT_P_HISTORY '/DIY/200/UC1/PART_DIM_HISTORY'

%DECLARE OUT_S_HISTORY '/DIY/200/UC1/SUPPLIER_DIM_HISTORY'

%DECLARE OUT_FACT '/DIY/200/UC1/SOLD_PARTS_DIM_FACT'

-- "interior" fields for the i/o tables. needed to assist with column projections

%DECLARE HI_O_FIELDS

'ho_custkey,ho_orderstatus,ho_totalprice,ho_orderdate,ho_orderpriority,ho_clerk,ho_shippr

iority'

%DECLARE HI_P_FIELDS

'hp_name,hp_mfgr,hp_brand,hp_type,hp_size,hp_container,hp_retailprice'

%DECLARE HI_S_FIELDS 'hs_name,hs_address,hs_nationkey,hs_phone,hs_acctbal'

%DECLARE UP_O_FIELDS

'uo_custkey,uo_orderstatus,uo_totalprice,uo_orderdate,uo_orderpriority,uo_clerk,uo_shippr

iority'

%DECLARE UP_P_FIELDS

'up_name,up_mfgr,up_brand,up_type,up_size,up_container,up_retailprice'

%DECLARE UP_S_FIELDS 'us_name,us_address,us_nationkey,us_phone,us_acctbal'

-- Option to use replicated JOIN for the supplier name lookup.

-- use it

%DECLARE USE_REP_JOIN 'USING \'REPLICATED\'' ;

-- don’t use it

-- %DECLARE USE_REP_JOIN ' ' ;

-- tag in end-date fieldstop signify an active records

%DECLARE OPEN_REC '12/31/9999'

-- tags for start/end date fields

%DECLARE TODAY_REC `date +%m/%d/%Y`

%DECLARE YESTE_REC `date --date="1 days ago" +%m/%d/%Y`

IMPORT 'uc1_macros.pig';

A Principled Technologies test report 19

Design advantages of Hadoop ETL offload with the Intel processor-
powered Dell | Cloudera | Syncsort solution

-- supplier, new history

supplier = update_history('$IN_S_UPDATES', '$IN_S_HISTORY', '$UP_S_FIELDS',

'$HI_S_FIELDS');

STORE supplier INTO '$OUT_S_HISTORY' USING PigStorage('|');

-- part, new history

part = update_history('$IN_P_UPDATES', '$IN_P_HISTORY', '$UP_P_FIELDS', '$HI_P_FIELDS');

STORE part INTO '$OUT_P_HISTORY' USING PigStorage('|');

-- orders, new history

orders = update_history('$IN_O_UPDATES', '$IN_O_HISTORY', '$UP_O_FIELDS',

'$HI_O_FIELDS');

STORE orders INTO '$OUT_O_HISTORY' USING PigStorage('|');

--

--

-- drop expired records

supplier = FILTER supplier BY h_enddate == '$OPEN_REC';

part = FILTER part BY h_enddate == '$OPEN_REC';

orders = FILTER orders BY h_enddate == '$OPEN_REC';

-- data for fact table

lineitem = lOAD '$IN_LINEITEM' USING PigStorage('|') AS (

 l_orderkey,l_partkey,l_suppkey,

 l_linenumber,l_quantity,l_extendedprice,l_discount,l_tax,l_returnflag,

 l_linestatus,l_shipdate,l_commitdate,

l_receiptdate,l_shipinstruct,l_shipmode,l_comment

);

-- dereference supplier and save required keys (drop l_suppkey)

lineitem = JOIN lineitem by l_suppkey LEFT OUTER, supplier by h_key;

lineitem = FOREACH lineitem GENERATE

 l_orderkey,l_partkey,

 hs_name,hs_nationkey,hs_acctbal,supplier::h_startdate,l_linenumber .. l_comment;

-- dereference part and save required keys (drop l_partkey)

lineitem = JOIN lineitem by l_partkey LEFT OUTER, part by h_key;

lineitem = FOREACH lineitem GENERATE

 l_orderkey,

 hp_name,hp_mfgr,hp_brand,hp_type,hp_retailprice,part::h_startdate,hs_name ..

l_comment;

-- dereference orders and save required keys (drop l_orderkey)

A Principled Technologies test report 20

Design advantages of Hadoop ETL offload with the Intel processor-
powered Dell | Cloudera | Syncsort solution

lineitem = JOIN lineitem by l_orderkey LEFT OUTER, orders by h_key;

lineitem = FOREACH lineitem GENERATE

 ho_custkey,ho_orderstatus,ho_totalprice,ho_orderdate,orders::h_startdate,hp_name ..

l_comment;

--

--

STORE lineitem INTO '$OUT_FACT' USING PigStorage('|');

uc1_macros.pig

DEFINE update_history(in_updates, in_history, update_fields, history_fields) RETURNS

history {

 -- update tables

 updates = LOAD '$in_updates' USING PigStorage('|') AS (

 u_key, $update_fields, u_comment

);

 -- historical tables

 historical = LOAD '$in_history' USING PigStorage('|') AS (

 h_key, $history_fields, h_comment, h_startdate:chararray,h_enddate:chararray

);

 -- remove expired records from the historical data and save for final table

 SPLIT historical INTO

 in_unexpired IF (h_enddate matches '^$OPEN_REC$'),

 in_expired OTHERWISE;

 -- full join by primary key to determine matches and left/right uniques

 joined = JOIN

 updates by u_key FULL OUTER,

 in_unexpired by h_key;

 SPLIT joined INTO

 new IF h_key IS NULL, -- totally new entry from updates

 old IF u_key IS NULL, -- unmatched historical entry

 matched OTHERWISE; -- match primary key: either redundant or updated entry

 -- format new and old entries for output

 new = FOREACH new GENERATE u_key .. u_comment, '$TODAY_REC', '$OPEN_REC';

 old = FOREACH old GENERATE h_key .. h_enddate;

 -- find updated entries

 SPLIT matched INTO

 updates IF (TOTUPLE($update_fields, u_comment) != TOTUPLE($history_fields,

h_comment)),

 redundant OTHERWISE;

 -- format redundant entries for output

 redundant = FOREACH redundant GENERATE h_key .. h_enddate;

 -- updated entry: expire historical; tag update

 modified = FOREACH updates GENERATE u_key .. u_comment, '$TODAY_REC', '$OPEN_REC';

 expired = FOREACH updates GENERATE h_key .. h_startdate, '$YESTE_REC';

 -- combine the record classes

 $history = UNION in_expired, new, old, redundant, modified, expired;

};

A Principled Technologies test report 21

Design advantages of Hadoop ETL offload with the Intel processor-
powered Dell | Cloudera | Syncsort solution

Use case 2: Data validation and pre-processing

set pig.maxCombinedSplitSize 1610612736

set pig.exec.mapPartAgg true

-- parameter and constants definitions

-- input and output files

%DECLARE IN_LINEITEM_VENDOR '/UC2/200/Source/lineitem_vendorx.tbl'

%DECLARE IN_SUPPLIER '/UC2/200/Source/supplier.tbl'

%DECLARE OUT_GOOD '/DIY/200/UC2/lineitem_validated'

%DECLARE OUT_BAD '/DIY/200/UC2/lineitem_errors'

-- Option to use replicated JOIN for the supplier name lookup.

-- use it

%DECLARE USE_REP_JOIN 'USING \'REPLICATED\'' ;

-- don’t use it

-- %DECLARE USE_REP_JOIN ' ' ;

-- REGEX to match valid Gregorian dates in the form yyyy-mm-dd for

-- years 0000 to 9999 (as a mathematical concept, not political).

%DECLARE VALID_DATE '^(?:\\\\d{4}-(?:(?:0[1-9]|1[0-2])-(?:0[1-9]|1\\\\d|2[0-8])|(?:0[13-

9]|1[0-2])-(?:29|30)|(?:0[13578]|1[02])-

31)|(?:\\\\d{2}(?:[02468][48]|[13579][26]|[2468]0)|(?:[02468][048]|[13579][26])00)-02-

29)$'

-- header for invalid data error message field and other nerror messages

%DECLARE ERR_MSG_HEAD 'ERROR(S) in LINEITEM source record:'

%DECLARE ORD_ERR ' invalid L_ORDERKEY value;'

%DECLARE PAR_ERR ' invalid L_PARTKEY value;'

%DECLARE SUP_ERR ' invalid L_SUPPKEY value;'

%DECLARE LIN_ERR ' invalid L_LINENUMBER value;'

%DECLARE QUN_ERR ' invalid L_QUANTITY value;'

%DECLARE DIS_ERR ' invalid L_DISCOUNT value;'

%DECLARE TAX_ERR ' invalid L_TAX value;'

%DECLARE RET_ERR ' L_RETURNFLAG must be one of A,N,R;'

%DECLARE LIS_ERR ' L_LINESTATUS must be one of O,F;'

%DECLARE SHI_ERR ' L_SHIPMODE must be one of AIR,FOB,MAIL,RAIL,REG AIR,SHIP,TRUCK;'

%DECLARE NAM_ERR ' supplier lookup failed;'

%DECLARE COD_ERR ' invalid L_COMMITDATE;'

%DECLARE SHD_ERR ' invalid L_SHIPDATE;'

%DECLARE RED_ERR ' invalid L_RECEIPTDATE;'

%DECLARE SRD_ERR ' L_SHIPDATE after L_RECEIPTDATE;'

-- start of the main program

-- data to be validated

lineitem = LOAD '$IN_LINEITEM_VENDOR' USING PigStorage('|') AS (

 l_orderkey:int, l_partkey:int, l_suppkey:int, l_linenumber:int, l_quantity:int,

 l_extendedprice:float, l_discount:float, l_tax:float,

 l_returnflag:chararray, l_linestatus:chararray,

A Principled Technologies test report 22

Design advantages of Hadoop ETL offload with the Intel processor-
powered Dell | Cloudera | Syncsort solution

 l_shipdate:chararray, l_commitdate:chararray, l_receiptdate:chararray,

 l_shipinstruct:chararray, l_shipmode:chararray,

 l_comment);

-- lookup table for supplier name and validation

-- only first two columns from supplier

suppnames = LOAD '$IN_SUPPLIER' USING PigStorage('|') AS (

 s_suppkey:int, s_name:chararray);

-- anti join idiom (completed below) for the supplier lookup (i.e., null is if unmatched)

-- We use known cardinality of TPC-H tables (supplier is small; lineitem is

-- huge) to choose JOIN type. For example, when the TPC-H SF is 1000, the entire

-- supplier table is about 1.4GB and 10,000,000 rows. So, we know the supplier table

-- with two fields will fit (partitioned or not) in RAM -- so replicated JOIN

good1 = JOIN lineitem BY l_suppkey LEFT OUTER, suppnames BY s_suppkey $USE_REP_JOIN ;

good2 = FOREACH good1 GENERATE

--

-- start of error message

 CONCAT('$ERR_MSG_HEAD', CONCAT(

 (l_orderkey > 0 ? '' : '$ORD_ERR'), CONCAT(

 (l_partkey > 0 ? '' : '$PAR_ERR'), CONCAT(

 (l_suppkey > 0 ? '' : '$SUP_ERR'), CONCAT(

 (l_linenumber > 0 ? '' : '$LIN_ERR'), CONCAT(

 (l_quantity > 0 ? '' : '$QUN_ERR'), CONCAT(

 ((l_discount >= 0.0F AND l_discount <= 1.0F)

 ? '' : '$DIS_ERR'), CONCAT(

 (l_tax >= 0.0F ? '' : '$TAX_ERR'), CONCAT(

 (l_returnflag IN ('A','N','R')

 ? '' : '$RET_ERR'), CONCAT(

 (l_linestatus IN ('F','O')

 ? '' : '$LIS_ERR'), CONCAT(

 (l_shipmode IN ('AIR','FOB','MAIL','RAIL','REG AIR','SHIP','TRUCK')

 ? '' : '$SHI_ERR'), CONCAT(

 (s_name is NOT NULL ? '' : '$NAM_ERR'), CONCAT(

 (l_commitdate matches '$VALID_DATE'

 ? '' : '$COD_ERR'), CONCAT(

 (l_shipdate matches '$VALID_DATE'

 ? '' : '$SHD_ERR'), CONCAT(

 (l_receiptdate matches '$VALID_DATE'

 ? '' : '$RED_ERR'), -- last CONCAT

 ((l_shipdate matches '$VALID_DATE' AND l_receiptdate matches '$VALID_DATE')

 ? ((DaysBetween(ToDate(l_receiptdate,'yyyy-MM-

dd'),ToDate(l_shipdate, 'yyyy-MM-dd')) >= 0)

 ? '' : '$SRD_ERR')

 : '')

))))))))))))))) AS err_message,

-- end of error message

--

 l_orderkey .. l_suppkey, s_name, l_linenumber .. l_shipmode,

--

-- start of shipping time and rating as a TUPLE

 ((l_shipdate matches '$VALID_DATE' AND l_receiptdate matches '$VALID_DATE')

 ? TOTUPLE((int)DaysBetween(ToDate(l_receiptdate,'yyyy-MM-

dd'),ToDate(l_shipdate, 'yyyy-MM-dd')),

A Principled Technologies test report 23

Design advantages of Hadoop ETL offload with the Intel processor-
powered Dell | Cloudera | Syncsort solution

 (CASE (int)DaysBetween(ToDate(l_receiptdate,'yyyy-MM-

dd'),ToDate(l_shipdate, 'yyyy-MM-dd'))

 WHEN 0 THEN 'A' WHEN 1 THEN 'A' WHEN 2 THEN 'A'

WHEN 3 THEN 'A'

 WHEN 4 THEN 'B' WHEN 5 THEN 'B' WHEN 6 THEN 'B'

WHEN 7 THEN 'B'

 WHEN 8 THEN 'C' WHEN 9 THEN 'C' WHEN 10 THEN 'C'

WHEN 11 THEN 'C' WHEN 12 THEN 'C' WHEN 13 THEN 'C'

 ELSE 'D' END))

 : TOTUPLE(999, 'Z')) AS t1:tuple(shippingtime_days:int,

shipping_ratingi:chararray),

-- end of shipping time and rating as a TUPLE

--

 l_comment;

SPLIT good2 INTO

 good IF ENDSWITH(err_message, ':'),

 bad OTHERWISE;

good = FOREACH good GENERATE l_orderkey .. l_shipmode, FLATTEN(t1), l_comment;

bad = FOREACH bad GENERATE err_message .. l_suppkey, l_linenumber .. l_shipmode,

l_comment;

STORE good into '$OUT_GOOD' USING PigStorage('|');

STORE bad into '$OUT_BAD' USING PigStorage('|');

A Principled Technologies test report 24

Design advantages of Hadoop ETL offload with the Intel processor-
powered Dell | Cloudera | Syncsort solution

Use case 3: Vendor mainframe file integration

set pig.maxCombinedSplitSize 2147483648

set pig.exec.mapPartAgg true

-- uc3

-- djs, 13 july 2015

-- parameters and constants

-- input and output files

%DECLARE IN_ORDERITEM '/UC3/200/Source/ORDRITEM'

%DECLARE OUT_ORDERS '/DIY/200/UC3/orders'

%DECLARE OUT_LINEITEM '/DIY/200/UC3/lineitem'

-- job parameterrs

-- set the property for fixed-lengthed records; unsure which it is

set mapreduce.input.fixedlengthinputformat.record.length 178;

set mapreduce.lib.input.fixedlengthinputformat.record.length 178;

set fixedlengthinputformat.record.length 178;

-- UDF loader: fixed-length reads and ebscdic decoing

register myudfs.jar;

-- this UDF loader reads fixed-length records (178 bytes), and performs

-- EBCDIC conversion on the string and formats the fields, using the fixed

-- copybook format for this table. A loader that works for

-- general-purpose copybooks is out of scope, but could be done with the

-- Jrecord classes.

cobol = LOAD '$IN_ORDERITEM' USING myudfs.SimpleFixedLengthLoader;

SPLIT cobol INTO

 orders if (chararray)$0 == 'O',

 lineitem if (chararray)$0 == 'L';

-- remove record-type field

orders = FOREACH orders GENERATE $1 .. ;

lineitem = FOREACH lineitem GENERATE $1 .. ;

store orders into '$OUT_ORDERS' USING PigStorage('|');

store lineitem into '$OUT_LINEITEM' USING PigStorage('|');

SimpleFixedLengthLoader.java

package myudfs;

/* compile with, for example,

 CP=/opt/cloudera/parcels/CDH-5.4.3-1.cdh5.4.3.p0.6/lib/pig/pig-0.12.0-cdh5.4.3.jar

 export PATH=$PATH:/usr/java/jdk1.7.0_67-cloudera/bin

A Principled Technologies test report 25

Design advantages of Hadoop ETL offload with the Intel processor-
powered Dell | Cloudera | Syncsort solution

 export JAVA_HOME=/usr/java/jdk1.7.0_67-cloudera

 javac -cp $CP SimpleFixedLengthLoader.java

*/

import java.io.IOException;

import java.util.List;

import java.util.ArrayList;

import java.util.Arrays;

import org.apache.hadoop.mapreduce.InputFormat;

import org.apache.hadoop.mapreduce.Job;

import org.apache.hadoop.mapreduce.RecordReader;

import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;

import org.apache.hadoop.mapreduce.lib.input.FixedLengthInputFormat;

import org.apache.hadoop.io.BytesWritable;

import org.apache.pig.FileInputLoadFunc;

import org.apache.pig.LoadFunc;

import org.apache.pig.PigException;

import org.apache.pig.backend.executionengine.ExecException;

import org.apache.pig.backend.hadoop.executionengine.mapReduceLayer.PigSplit;

import org.apache.pig.data.DataByteArray;

import org.apache.pig.data.Tuple;

import org.apache.pig.data.TupleFactory;

import org.apache.hadoop.classification.InterfaceAudience;

public class SimpleFixedLengthLoader extends LoadFunc {

 protected RecordReader in = null;

 private ArrayList<Object> mTuple = null;

 private TupleFactory mTupleFactory = TupleFactory.getInstance();

 public SimpleFixedLengthLoader() {

 }

 @Override

 public Tuple getNext()

 throws IOException {

 mTuple = new ArrayList<Object>();

 try {

 if (!in.nextKeyValue()) {

 return null;

 }

 BytesWritable val = (BytesWritable) in.getCurrentValue();

 byte[] buf = val.getBytes();

 String str = new String(buf, 0, 178, "Cp037");

 addTupleValue(mTuple, doSingle(str, 0)); // record type

 switch (str.charAt(0)) {

 case 'O':

 addTupleValue(mTuple, cleanL(str, 1, 13)); // orderkey

 addTupleValue(mTuple, cleanL(str, 13, 25)); // custkey

 addTupleValue(mTuple, doSingle(str, 25)); // orderstatus

 addTupleValue(mTuple, unpackBCD(buf, 26, 34)); // totalprice

 addTupleValue(mTuple, doDate(str, 34)); // orderdate

 addTupleValue(mTuple, cleanR(str, 42, 57)); // orderpriority

 addTupleValue(mTuple, cleanR(str, 57, 72)); // clerk

 addTupleValue(mTuple, doSingle(str, 72)); // shippriority

 addTupleValue(mTuple, cleanR(str, 73, 152)); // comment

A Principled Technologies test report 26

Design advantages of Hadoop ETL offload with the Intel processor-
powered Dell | Cloudera | Syncsort solution

 break;

 case 'L':

 addTupleValue(mTuple, cleanL(str, 1, 13)); // orderkey

 addTupleValue(mTuple, cleanL(str, 13, 25)); // partkey

 addTupleValue(mTuple, cleanL(str, 25, 37)); // suppkey

 addTupleValue(mTuple, cleanL(str, 37, 41)); // linenumber

 addTupleValue(mTuple, unpackBCD(buf, 41, 49)); // quantity

 addTupleValue(mTuple, unpackBCD(buf, 49, 57)); // extendedprice

 addTupleValue(mTuple, unpackBCD(buf, 57, 65)); // discount

 addTupleValue(mTuple, unpackBCD(buf, 65, 73)); // tax

 addTupleValue(mTuple, doSingle(str, 73)); // returnflag

 addTupleValue(mTuple, doSingle(str, 74)); // linestatus

 addTupleValue(mTuple, doDate(str,75)); // shipdate

 addTupleValue(mTuple, doDate(str,83)); // commitdate

 addTupleValue(mTuple, doDate(str,91)); // receiptdate

 addTupleValue(mTuple, cleanR(str, 99, 124)); // shipinstruct

 addTupleValue(mTuple, cleanR(str,124, 134)); // shipmode

 addTupleValue(mTuple, cleanR(str,134, 178)); // comment

 break;

 default:

 String unr = "Error: unknown record type";

 addTupleValue(mTuple, unr); // error message

 break;

 }

 Tuple tt = mTupleFactory.newTupleNoCopy(mTuple);

 return tt;

 } catch (InterruptedException e) {

 int errCode = 6018;

 String errMsg = "Error while reading input";

 throw new ExecException(errMsg, errCode,

 PigException.REMOTE_ENVIRONMENT, e);

 }

 }

 private String unpackBCD(byte[] buf, int start, int end) {

 StringBuffer sb = new StringBuffer();

 byte bcd, high, low;

 for (int i = start; i < end-1; i++) {

 bcd = buf[i];

 high = (byte) (bcd & 0xf0);

 high >>>= (byte) 4;

 high = (byte) (high & 0x0f);

 low = (byte) (bcd & 0x0f);

 sb.append(high);

 sb.append(low);

}

 bcd = buf[end-1];

 high = (byte) (bcd & 0xf0);

 high >>>= (byte) 4;

 high = (byte) (high & 0x0f);

 low = (byte) (bcd & 0x0f);

 sb.append(high);

// add decimal -- no check for length

 sb.insert(sb.length()-2, '.');

A Principled Technologies test report 27

Design advantages of Hadoop ETL offload with the Intel processor-
powered Dell | Cloudera | Syncsort solution

// add sign

 if (low == 0x0d) sb.insert(0, '-');

 return (sb.toString()).replaceFirst("^(-?)0+(?!\\.)","$1");

 }

 private String doSingle(String str, int start) {

 return str.substring(start, start+1);

 }

 private String cleanR(String str, int start, int end) {

 return str.substring(start, end).replaceFirst("\\s+$", "");

 }

 private String cleanL(String str, int start, int end) {

 return str.substring(start, end).replaceFirst("^0+(?!$)", "");

 }

 private String doDate(String str, int start) {

 return str.substring(start,start+4) + '-' + str.substring(start+4,start+6) +

'-' + str.substring(start+6,start+8);

 }

 private void addTupleValue(ArrayList<Object> tuple, String buf) {

 tuple.add(new DataByteArray(buf));

 }

 @Override

 public InputFormat getInputFormat() {

 return new FixedLengthInputFormat();

 }

 @Override

 public void prepareToRead(RecordReader reader, PigSplit split) {

 in = reader;

 }

 @Override

 public void setLocation(String location, Job job)

 throws IOException {

 FileInputFormat.setInputPaths(job, location);

 }

}

A Principled Technologies test report 28

Design advantages of Hadoop ETL offload with the Intel processor-
powered Dell | Cloudera | Syncsort solution

ABOUT PRINCIPLED TECHNOLOGIES

Principled Technologies, Inc.
1007 Slater Road, Suite 300
Durham, NC, 27703
www.principledtechnologies.com

We provide industry-leading technology assessment and fact-based
marketing services. We bring to every assignment extensive experience
with and expertise in all aspects of technology testing and analysis, from
researching new technologies, to developing new methodologies, to
testing with existing and new tools.

When the assessment is complete, we know how to present the results to
a broad range of target audiences. We provide our clients with the
materials they need, from market-focused data to use in their own
collateral to custom sales aids, such as test reports, performance
assessments, and white papers. Every document reflects the results of
our trusted independent analysis.

We provide customized services that focus on our clients’ individual
requirements. Whether the technology involves hardware, software, Web
sites, or services, we offer the experience, expertise, and tools to help our
clients assess how it will fare against its competition, its performance, its
market readiness, and its quality and reliability.

Our founders, Mark L. Van Name and Bill Catchings, have worked
together in technology assessment for over 20 years. As journalists, they
published over a thousand articles on a wide array of technology subjects.
They created and led the Ziff-Davis Benchmark Operation, which
developed such industry-standard benchmarks as Ziff Davis Media’s
Winstone and WebBench. They founded and led eTesting Labs, and after
the acquisition of that company by Lionbridge Technologies were the
head and CTO of VeriTest.

Principled Technologies is a registered trademark of Principled Technologies, Inc.
All other product names are the trademarks of their respective owners.

Disclaimer of Warranties; Limitation of Liability:
PRINCIPLED TECHNOLOGIES, INC. HAS MADE REASONABLE EFFORTS TO ENSURE THE ACCURACY AND VALIDITY OF ITS TESTING, HOWEVER,
PRINCIPLED TECHNOLOGIES, INC. SPECIFICALLY DISCLAIMS ANY WARRANTY, EXPRESSED OR IMPLIED, RELATING TO THE TEST RESULTS AND
ANALYSIS, THEIR ACCURACY, COMPLETENESS OR QUALITY, INCLUDING ANY IMPLIED WARRANTY OF FITNESS FOR ANY PARTICULAR PURPOSE.
ALL PERSONS OR ENTITIES RELYING ON THE RESULTS OF ANY TESTING DO SO AT THEIR OWN RISK, AND AGREE THAT PRINCIPLED
TECHNOLOGIES, INC., ITS EMPLOYEES AND ITS SUBCONTRACTORS SHALL HAVE NO LIABILITY WHATSOEVER FROM ANY CLAIM OF LOSS OR
DAMAGE ON ACCOUNT OF ANY ALLEGED ERROR OR DEFECT IN ANY TESTING PROCEDURE OR RESULT.

IN NO EVENT SHALL PRINCIPLED TECHNOLOGIES, INC. BE LIABLE FOR INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES IN
CONNECTION WITH ITS TESTING, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. IN NO EVENT SHALL PRINCIPLED TECHNOLOGIES,
INC.’S LIABILITY, INCLUDING FOR DIRECT DAMAGES, EXCEED THE AMOUNTS PAID IN CONNECTION WITH PRINCIPLED TECHNOLOGIES, INC.’S
TESTING. CUSTOMER’S SOLE AND EXCLUSIVE REMEDIES ARE AS SET FORTH HEREIN.

http://www.principledtechnologies.com

